- 相关博文
- 最新资讯
-
在大数据系统中,Sqoop 就像是一位干练的“数据搬运工”,帮助我们把 MySQL、Oracle 等数据库里的数据快速、安全地导入到 Hadoop、Hive 或 HDFS 中,反之亦然。这个专栏从基础原理讲起,配合实战案例、参数详解和踩坑提醒,让你逐步掌握 Sqoop 的使用技巧。不管你是初学者,还是正在构建数据管道的工程师,都能在这里找到实用的经验和灵感。
-
本文深入解析基于 Java 的大数据分布式存储技术在游戏行业的全流程应用,涵盖架构设计、核心代码、头部厂商实战及前沿技术探索,展现 Java 在处理超大规模游戏数据时的卓越性能与创新实践。
-
本文系统阐述 Java 大数据在智能安防门禁系统中的深度应用,涵盖多生物特征融合架构设计、核心代码实现、头部企业实战案例及前沿技术探索,展现 Java 技术在构建高可靠、智能化安防体系中的核心价值。
-
本文系统阐述 Java 大数据与机器学习技术在金融市场情绪分析及投资策略制定中的全流程应用,涵盖数据采集架构、模型优化细节、顶级机构实战案例,以及量子计算、联邦学习等前沿技术融合,揭示技术如何转化为实际投资价值。
-
Git全局配置查询可通过git config --global --list查看。主要配置包括:禁用SSL验证(不推荐)、GitLFS相关设置(大文件处理),以及提交用户信息(用户名和邮箱)。其中GitLFS配置涉及文件检出/提交时的自动解压/压缩,并强制大文件跟踪。这些配置定义了Git的全局行为,但需注意禁用SSL验证会降低安全性。
-
本文介绍了Git版本和配置管理的常用命令。通过git --version可查看Git安装版本,使用git config系列命令能查询和设置用户配置:--global查看/修改全局配置(如用户名和邮箱),--local管理本地仓库配置。示例包括查看特定配置项和设置全局用户信息,为Git基础配置提供了简明操作指南。
-
在构建实时聊天服务时,我们既要保证消息的即时传递,又需要对消息进行持久化存储以便查询历史记录。然而,直接同步写入数据库在高并发场景下容易成为性能瓶颈,影响消息的实时性。秉承"没有什么问题是加一层解决不了的"理念,引入消息队列(MQ)进行异步存储是一个优雅的解决方案。消息先快速写入MQ确保即时送达,随后由专门的消费者服务从队列取出,平稳写入数据库。在本文中,我们将详细探讨如何利用Spring Boot 3 结合消息队列技术,构建一个高效可靠的聊天消息存储系统。
-
有些没答上来。
-
深圳国资委以“基础设施筑基、科技金融赋能、新兴产业引领”的三维立体布局,不仅筑牢城市发展底盘,更以改革创新的“深圳密码”为全国国资国企提供了从规模扩张到质量跃升的转型范本。未来五年,随着“十五五”战略落地,深圳国资将加速向“世界一流资本投资运营公司”迈进,为粤港澳大湾区建设和中国式现代化贡献更多国企力量。深圳国资委通过“基础研究—应用转化—产业生态”的全链条布局,正成为国产数据库技术创新的重要推动力量。未来,随着“十五五”规划中“十大原创技术攻关”的推进,深圳国资在数据库领域的投入有望进一步加大。
-
消息到达MQ以后,如果MQ不能及时保存,也会导致消息丢失,所以MQ的可靠性也非常重要。为了提升性能,默认情况下MQ的数据都是在内存存储的临时数据,重启后就会消失。为了保证数据的可靠性,必须配置数据持久化,包括:交换机持久化队列持久化消息持久化我们以控制台界面为例来说明。在控制台的页面,添加交换机时可以配置交换机的参数:设置为就是持久化模式,就是临时模式。在控制台的Queues页面,添加队列时,同样可以配置队列的参数:除了持久化以外,你可以看到队列还有很多其它参数,有一些我们会在后期学习。在控制台发送消息的时
数据错误
-
ps:docker容器之间是完全隔离的,不同的docker容器可以理解为不同的服务器,部署多个docker容器的主机是这些docker容器的宿主机。docker容器中的应用如果要访问宿主机上运行的服务,需要指定宿主机IP,而不是docker容器的本地IP。--查看容器 id,替换下面的030926f40873,使用实际的containerid。--查看容器 id,替换下面的030926f40873,使用实际的containerid。这里的172.17.0.3即es所在docker容器的内网IP。
-
摘要:本文系统解析现代数据湖架构,重点探讨对象存储、三大表格式(Iceberg/Hudi/Delta Lake)、计算引擎与元数据服务的协作机制。通过对比分析各组件特性与适用场景,揭示数据湖在存储成本、实时性、灵活性等方面的优势,并提出企业选型策略:实时场景优选Hudi,分析场景采用Iceberg,Databricks生态选择Delta。架构设计实现存算分离,支持多引擎协同,成本降幅达75%,构建高效弹性的大数据平台。
-
在本节实战中,我们学习了Spark SQL的分区自动推断功能,这是一种提升查询性能的有效手段。通过创建具有不同分区的目录结构,并在这些目录中放置JSON文件,我们模拟了一个分区表的环境。使用Spark SQL读取这些数据时,Spark能够自动识别分区结构,并将分区目录转化为DataFrame的分区字段。
-
使用
可以彻底改变 WPF 窗口标题栏的默认样式,打造个性化的界面风格。-- 定义标题区域与客户区域 --> -- 标题栏高度 -->-- 客户区域,占据剩余空间 -->-- 标题栏内容 --> -- 客户区域内容 -->
数据错误 -
若操作中频繁遇到冲突或认证问题,建议优先配置SSH密钥,并确保本地与远程分支一致性(通过。登录Gitee,进入仓库查看代码是否已成功同步。文件,添加需忽略的文件/文件夹(如。
-
本文介绍了企业如何在私有云或混合云中构建高可用大数据平台的实践方案。通过容器化技术将Flink、Spark等计算引擎部署在Kubernetes集群,配合HDFS本地存储或MinIO等替代方案,搭建包含资源编排、监控告警、安全认证的完整平台架构。文章详细说明了Flink在K8s的部署方法、镜像构建标准、HDFS存储方案选择,以及Prometheus+Grafana监控体系的实施要点,并给出了权限管理和CI/CD集成的建议。该方案既满足企业对数据安全与成本控制的需求,又提供了从数据处理到监控的一站式解决方案。
-
大数据运维是确保大数据系统稳定运行、高效处理数据的关键环节。
-
本文摘要:深度学习中的CNN架构剖析与实践指南 文章系统解析了CNN的核心组件:1)卷积层作为特征提取器;2)归一化层优化训练过程;3)激活函数引入非线性。针对工程实践,提供了数据增强策略矩阵和学习率调度方案,并给出典型问题(如NaN值和过拟合)的排查方法。通过可视化实例和代码片段,展示了传统方法在图像分类中的局限性,突出了CNN在自动特征提取和泛化能力上的优势。文章兼具理论深度与实践价值,为CNN学习者提供了全面的技术参考。

-
-
当企业通过上云实现转型时,迁移是一个重要的无法回避的话题。 迁移是为了提高企业信息架构和应用的敏捷性,从而助力企业快速创新和发展;迁移也是为了提高企业全球化和数字化的水平。我们从正在进行转型的公司中看到,通过云迁移实现架构和应用的现代化,主要有四个大趋势。
-
其实“数据湖”的概念由来已久,如果追溯时间大概可以到2011年。如今我们经常提及的数据湖其实可以被认为是一个集中式的安全存储库,用户可以任何规模存储、管理、发现并共享所有结构化和非结构化数据,过程中无需预定义架构。
-
日前,ASPLOS 2020公布了计算机界最新科技成果,其中包括阿里云提交的名为《High-density Multi-tenant Bare-metal Cloud》的论文,该论文阐述了阿里云自研的神龙服务器架构如何解决困扰云计算行业多年的虚拟化性能损耗问题,打破物理机的性能神话,让云服务器突破性能极限。
-
让服务器突破性能极限 阿里云神龙论文入选计算机顶会ASPLOS
日前,ASPLOS 2020公布了计算机界最新科技成果,其中包括阿里云提交的名为《High-density Multi-tenant Bare-metal Cloud》的论文,该论文阐述了阿里云自研的神龙服务器架构如何解决困扰云计算行业多年的虚拟化性能损耗问题,打破物理机的性能神话,让云服务器突破性能极限。此次入选意味着全球计算机顶会对阿里云自研技术的认可,也意味着中国创新技术在全球计算机界争得了一席之地。
-
一文了解 Spring Boot 服务监控,健康检查,线程信息,JVM堆信息,指标收集,运行情况监控!...
去年我们项目做了微服务1.0的架构转型,但是服务监控这块却没有跟上。这不,最近我就被分配了要将我们核心的微服务应用全部监控起来的任务。我们的微服务应用都是SpringBoot 应用,因此就自然而然的想到了借助Spring Boot 的Actuator 模块。
-
从零单排HBase 02:全面认识HBase架构(建议收藏)
在网上看过很多HBaes架构相关的文章,内容深浅不一,直到发现了一篇MapR官网的文章,写得实在太生动了。
-
本文以淘宝作为例子,介绍从一百个到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术,让大家对架构的演进有一个整体的认知,文章最后汇总了一些架构设计的原则。
-
稳定、可扩展、模块化、简化部署过程、版本控制……一文看懂 Kubernetes 到底如何运用!...
说实话,我是个Kubernetes爱好者。Kubernetes是软件开发的重要一步。当我遇到它时,我就想:“这就是将容器融入生产的方式”。我没有任何犹豫就投入了它的怀抱。有成千上万的架构师像我一样,已经深深爱上这项技术。
-
当微软前首席软件架构师雷·奥兹(Ray Ozzie)在2008年的PDC大会上发布Windows Azure时,没人能预估这个软件平台将会为该公司和整个行业带来什么样的影响。
-
微服务架构模式经过5年多的发展,在各行各业如火如荼地应用和实践。如何在企业中优雅地设计微服务架构?是企业面对的一个重要问题。本文将讲述微服务架构1.0设计与实践以及面临问题和破局,最后讲述微服务架构2.0设计与实践等方面,尝试去回答这个难题。
数据错误 -
“云原生全家桶“KubeSphere 如何让企业从容迈进云原生时代?
最近两年,云原生大火。究其原因,“数字化转型”几乎成为所有企业当下最迫切的需求,在这样的趋势下,恰逢新旧IT架构升级的契机,容器、微服务等技术与理念得以发挥所长。众多“上云”企业,寄望于业务能够快速迭代、缩短交付周期、弹性敏捷以及成本控制更优……以支持现有业务的快速发展及创新。
-
企业云计算领导者Nutanix(纳斯达克代码:NTNX)近日宣布,物流行业领导企业嘉里大通 (Kerry EAS) 已采用Nutanix超融合基础架构(HCI)和企业云解决方案,进行企业数据中心的现代化改造。
-
随着云计算,大数据和人工智能技术应用,单靠CPU已经无法满足各行各业的算力需求。海量数据分析、机器学习和边缘计算等场景需要计算架构多样化,需要不同的处理器架构和GPU,NPU和FPGA等异构计算技术协同,满足特定领域的算法和专用计算需求。今天,笔者带大家详细了解下FPGA技术。 FPGA是英文Field Programmable Gate Array简称,即现场可编程门阵列。它是在PLA、PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
-
随着云计算,大数据和人工智能技术发展,边缘计算发挥着越来越重要的作用,补充数据中心算力需求。计算架构要求多样化,需要不同的CPU架构来满足不断增长的算力需求,同时需要GPU,NPU和FPGA等技术加速特定领域的算法和专用计算。以此,不同CPU架构,不同加速技术应用而生。
-
作为一家年营收超1000亿美元全球化企业,华为有19万员工且多达1023个办公地点,遍布世界范围内170多个国家并横跨运营商、政企和消费者三大领域的业务规模……如此雄厚财力、庞大架构、繁杂业务,有何可愁?自然是对寻找一款能够支撑企业有效增长以及全球化运作的智能工作平台有高度迫切的需求,这就是华为云WeLink的缘起之因。“确实,WeLink在华为云产品序列中绝对算得上是战略级,我们对此投入了很多。”华为云副总裁、联接与协同业务总裁薛浩说。
数据错误 -
京东任命周伯文担任京东云与AI事业部负责人 全面负责AI、云计算、IoT三大技术领域
2019年12月6日,京东集团宣布设立京东云与AI事业部,整合原京东云、人工智能、IoT三大事业部的架构与职责,由京东集团副总裁周伯文博士担任负责人,向京东集团董事局主席兼CEO刘强东先生汇报。周伯文博士将带领京东云、人工智能、IoT团队聚焦战略、技术、产品、创新、场景化顶层设计和商业落地,将京东“干锤百炼”的前沿技术与实体经济相融合,致力于实现学术前沿化、技术商业化的目标。
-
12月3日,广东省农村信用社联合社银信中心副总裁周丹在2019年阿里云广东峰会上透露,通过携手阿里云,广东农信实现了从传统架构向云化的转型升级,金融业务系统的搭建工期从按月计算缩短至按天计算,效率大幅提升。
-
-
华为云TaurusDB计算存储分离架构:让数据“身”分离,“心”凝聚
在2019年HC大会上,华为重磅推出最新一代高扩展海量存储分布式数据库——TaurusDB,它拥有一个最大的特点就是将存储和计算以一种分离的架构形式运行。很多人就会问到,华为云为什么会设计这款产品?核心竞争力是什么?对比原生MySQL的优势有哪些?借此时机,CSDN记者有幸采访到了华为云TaurusDB数据库资深技术专家,现在就请他来为我们一一解答。
