
- 相关博文
- 最新资讯
-
反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。为什么要序列化:一般来说,“活的”对象只生存在内存里,关机断 电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。在开发过程中,基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象不是基本的数据类型(某个类)----没有对应的Hadoop类型那么。
-
学习和使用了RT-Thread有2年多了的时间,最近一直在研究开源项目Matter相关的软件架构设计,趁此机会,再来温习一下rt-thread的软件架构设计。
-
部分告诉我们在查询中参与分片的总数,以及这些分片成功了多少个失败了多少个。如果我们遭遇到一种灾难级别的故障,在这个故障中丢失了相同分片的原始数据和副本,那么对这个分片将没有可用副本来对搜索请求作出响应。假若这样,Elasticsearch 将报告这个分片是失败的,但是会继续返回剩余分片的结果。:匹配的文档的分数。它衡量了文档与查询的匹配程度,默认情况下,首先返回最相关的文档结果,就是说,返回的文档是按照score 降序排列的。:与查询所匹配文档的_score的最大值。:匹配的文档的原始数据。
-
出现问题要首先检查hostname是不是与hadoop、spark配置的一致,不要想当然的认为是一样的,先检查一下最基础的,如果还是不能解决,就要在网上搜索一下了,通常情况下,问题产生的原因都是因为忽略了某个地方的小细节。
-
大数据必看面试题
-
Redis7 十大数据类型以及各种实操案例
-
Ubuntu环境,利用docker容器搭建hadoop完全分布式保姆级教程(个人笔记)
数据错误
-
zookeeper是一个分布式协调服务软件,:全局数据一致性.主节点:leader主节点主要负责:①负责管理整个集群,保证全局数据一致性②负责处理数据事务(包括增删改等)请求③负责转发非事务(查)请求给从节点从节点:follower从节点主要负责:①实时从主节点拉取数据,保证全局数据一致性②负责处理非事务(查)请求③负责转发事务(增删改)请求给主节点④有投票选举权观察者:observer在这里,除了没有投票权,其作用和follow作用一样。
-
hive
-
Linux安装部署集群化软件Zookeeper
-
(2)如果你的集群虚拟机已经都创建完成,且确保网络,ssh密钥登陆 都做好了后,就可以开始安装jdk和hadoop了。/usr/local/src/hadoop/etc/hadoop 中的对应配置文件中加入下面的相关参数。这一步是集群配置的关键。做一个hadoop的配置流程的全记录,把遇到的问题和细节全都记录了下来。选择下载hadoop的版本,下载对应版本的source安装包。进入安装目录,修改对应安装包文件名,改成jdk,hadoop。(1) hadoop的部署规划,我使用3台虚假机搭建集群,
-
这个项目是19年的项目了,并且很多功能视频的并没有实现而且给的资料里面很多BUG,改BUG十分头疼,建议还没开始写的小伙伴学习一下老师实现功能的思想即可。我的代码中把资料里的BUG全部改正(我遇到的反正全部改正了)。来源于黑马程序员入门项目,基于视频内容功能全部实现,又补全一些视频里没有的CURD功能,手机注册部分我用的是qq邮箱注册。ZookKeeper我部署在linux中了,ZooKeeper配置文件大家记得改一下哦。工具:IDEA,MySql8.0,ZooKeeper,Redis。
数据错误
-
Kafka作为存储、性能兼备的消息队列,适用场景很多,伸缩性也很强。如何调节kafka的配置参数,以及设计专题、分区的数量、物理位置,很大程度上影响到整个架构的成败。很多文章是站在数据中心的角度来谈kafka的配置,而对于小团队,往往只希望把Kafka作为一个跨进程、可追溯的隔离器来使用,取代繁琐的文件或者自定义TCP/UDP接口。此时,单独讨论这种场景就显得有必要了。本文介绍了在磁盘与网络带宽都捉襟见肘的情况下,如何使用两种消息队列综合设计架构,避免瓶颈的方法。
-
Flink中时间语义是非常丰富的,总共有三种,分别是事件时间(Event Time)、处理时间(Processing Time)和摄入时间(Ingestion Time),丰富的时间语义加上水位线( Watermarks)功能,让我们在处理流式数据更加轻松。在Flink中窗口也定义的非常全面,有计数窗口(Count Window)和时间窗口(Time Window),在窗口切分上有份滚动窗口(Tumbling Windows)、滑动窗口(Sliding Windows)、会话窗口等
-
分区:分目录,粗粒度分桶:拆分文件,细粒度,按属性的 hash 值,把数据放入第一个到第 n 个文件。
-
生产计划模块可以针对销售订单和预测订单,同时考虑在库库存和在途库存,基于有限产能和物料,对订单的计划交期做出快速响应,给出生产周计划和月计划,制定合理的库存水位,从中长期解决物料不足和能力短缺问题;基于更精准的需求预测,和动态的安全库存预测模型,生成随时间改变的动态库存策略,实现在保证预期服务水平的前提下,降低库存水位,减少资金占用,缩短库存周期的目标。,在满足多场景业务逻辑的前提下,进行智能运算,给出多权重、多维度预排结果,可由企业相关负责人进行决策,应对环境和运营目标的多变,提升运营整体效益。

-
随着业务的发展,MySQL数据库中的表会越来越多,表中的数据量也会越来越大,相应地,数据操作的开销也会越来越大;另外,无论怎样升级硬件资源,单台服务器的资源(CPU、磁盘、内存、网络IO、事务数、连接数)总是有限的,最终数据库所能承载的数据量、数据处理能力都将遭遇瓶颈。
-
最近读到这样一篇好文章,从底层硬件角度出发剖析了一下CPU对代码的识别和读取,内容非常精彩,读完感觉大学里学到的很多东西瞬间联系起来了,这里分享给大家,希望能认真读完并有所收获。
-
随着云计算,大数据和人工智能技术应用,单靠CPU已经无法满足各行各业的算力需求。海量数据分析、机器学习和边缘计算等场景需要计算架构多样化,需要不同的处理器架构和GPU,NPU和FPGA等异构计算技术协同,满足特定领域的算法和专用计算需求。今天,笔者带大家详细了解下FPGA技术。 FPGA是英文Field Programmable Gate Array简称,即现场可编程门阵列。它是在PLA、PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
-
程序的运行过程,实际上是程序涉及到的、未涉及到的一大堆的指令的执行过程。 当程序要执行的部分被装载到内存后,CPU要从内存中取出指令,然后指令解码(以便知道类型和操作数,简单的理解为CPU要知道这是什么指令),然后执行该指令。再然后取下一个指令、解码、执行,以此类推直到程序退出。
-
随着云计算,大数据和人工智能技术发展,边缘计算发挥着越来越重要的作用,补充数据中心算力需求。计算架构要求多样化,需要不同的CPU架构来满足不断增长的算力需求,同时需要GPU,NPU和FPGA等技术加速特定领域的算法和专用计算。以此,不同CPU架构,不同加速技术应用而生。
-
和传统服务器相比,星星海统一的整机方案可以支持不同的CPU主机,前瞻性的高兼容架构,统一规划的硬件底座,可以支持未来3-5年的服务器产品演进。
