
- 相关博文
- 最新资讯
-
SpringBoot + MyBatis-Plus + MySQL(提供任务管理、支付结算)建议使用**乐观锁(version 字段)**或。:UniApp(Vue语法,支持小程序/公众号/APP):Vue + ElementUI(任务审核、财务管理):未使用事务管理任务状态更新,导致并发问题,建议使用。发布任务(填写任务描述、赏金、截止时间)任务状态管理(领取/进行中/已完成)任务验收(用户确认,资金结算)任务审核(平台审核任务)任务匹配(师傅领取任务)任务完成(上传完成材料)任务大厅(筛选可接任务)
-
注意:启动前先将hbase conf目录下的配置文件hbase-env.sh,hbase-site.xml,regionservers(设置regionserver),backup-masters(设置备用master)根据hbase的不同版本如1.x,2.x进行配置。在hbase-env.sh配置文件中需配置hbase占用内存大小,如果虚拟机的物理内存不足会导致无法启动,此时需要查看虚拟机剩余内存和分配给虚拟机的内存大小和配置文件hbase-env.sh的内存分配大小。
-
大数据时代背景下,电商经营模式发生很大改变。在传统运营模式中,缺乏数据积累,人们在做出一些决策行为过程中,更多是凭借个人经验和直觉,发展路径比较自我封闭。而大数据时代,为人们提供一种全新的思路,通过大量的数据分析得出的结果将更加现实和准确。商家可以对客户的消费行为信息数据进行收集和整理,比如消费者购买产品的花费、选择产品的渠道、偏好产品的类型、产品回购周期、购买产品的目的、消费者家庭背景、工作和生活环境、个人消费观和价值观等。通过数据追踪,知道顾客从哪儿来,是看了某网站投放的广告还是通过朋友推荐链接,是新访
-
RabbitMQ 是消息队列领域的经典组件,也是面试中高频考察的中间件之一。本文通过核心概念解析 + 通俗场景类比,帮助读者快速掌握 RabbitMQ 的核心原理与高频面试题答案。场景化回答:用电商案例解释技术原理(如订单、支付、库存)突出设计能力:主动提及方案的优缺点(如镜像队列牺牲性能换高可用)结合项目经验:举例说明如何解决消息丢失或重复消费问题。
-
高校学生奖学金评定系统 选题推荐 Java毕设 Python毕设 大数据毕设 程序定制 适合作为毕业设计 课程设计 实习项目 附源码+安装部署+文档指导
-
【代码】【Rabbitmq】搭建。
-
任何报错都事出有因处理死锁问题思路确认发生死锁的方法--查看并发量--并发量大--大概率是同时操作改张表引发的问题--加乐观锁或者其他关键字可解决--必须明确事务的执行顺序并发量小--大概率是sql引起的问题--找到具体sql--优化sql,重建索引(索引失效引起)
-
1. 通过 FastAPI 接口上传图片并异步处理水印2. 使用 Celery 处理异步任务队列3. 使用 RabbitMQ 作为消息代理4. 支持定时任务: - 每小时自动处理待处理图片 - 每天清理一周前的旧图片5. 支持任务状态查询6. 支持查看计划任务列表
-
Flink介绍——实时计算核心论文之S4论文总结
-
4. 交换机在成功接收到消息会返回ack,未接受到消息会返回nack.且在绑定的回调函数中定义了ack 和 nack的处理逻辑,总结:发送者需要与MQ进行通讯以及确认,大大影响了发送消息的效率,性能也会受到影响,默认出现的异常很低,不用特意去开启.缺点: 当前线程无法向下执行,如果发送消息这行代码一直卡住重连,下面的业务代码就无法执行,发送者在发送给MQ失败的情况下,尝试继续重新连接,1.MQ正确处理发送者发来的消息(到达了MQ),但是。.该回调函数会返回消息,路由失败的原因,消息id等,
-
从市场需求来看,智慧校园系统的兴起是时代发展的必然趋势。它为学校提供了更高效的管理手段,为教师创造了更优质的教学环境,为学生带来了更丰富的学习体验。它开启了教育的新时代,让我们共同期待在智慧校园系统的助力下,教育事业绽放出更加绚烂的光彩。这不仅节省了大量纸张资源,更充分利用了大数据的优势,为教学提供了精准的数据支持,助力老师更好地了解学生的学习情况,实现个性化教学。智慧校园系统作为这场变革的核心力量,正以其强大的功能和创新的理念,为学校的管理、教学和学生的学习带来前所未有的便利与提升,开启了教育的新时代。
数据错误
-
在 Elasticsearch 中,你需要为索引定义一个映射,确保字段可以存储 JSON 格式的数据。通常,你可以使用。
-
在复杂分布式系统设计中,消息队列作为中间件正扮演着越来越重要的角色。本文深入剖析了消息队列的三大核心价值:解耦、异步处理和削峰填谷。当您的系统面临模块间耦合度高、关键操作阻塞主流程、或高并发请求导致服务崩溃等问题时,消息队列或许正是您需要的解决方案。您是否思考过,为什么众多高流量平台能在"秒杀"等极端场景下保持稳定?文章还将探讨消息队列的高可靠性、良好扩展性和灵活性等优势,并简要介绍Kafka、RabbitMQ等主流实现方案。无论是系统架构优化还是性能提升,这篇文章都将为您提供实用的技术洞见。
-
本文详细探讨了基于RabbitMQ的异步通知系统设计与实现。通过将同步通知改为异步处理,解决了响应时间长、系统耦合和高峰期崩溃等问题。采用Topic交换机进行消息路由,实现了不同类型通知的精细分发。通过消息持久化、死信队列和消费者扩展等机制,保障了通知可靠送达。最终实现了响应时间从7秒降至50ms,系统解耦合和高峰期稳定运行,为个人博客提供高效可靠的通知功能。
-
适用场景:官方连接器版本不兼容或需深度定制。实现步骤继承RichSinkFunction@Override// 初始化ES客户端@Overridetry {// 处理异常添加Sink到作业Flink与Elasticsearch的整合为实时数据处理和搜索场景提供了端到端解决方案。通过合理选择连接器、优化配置参数,可构建高性能、高可靠的数据流水线。随着两者生态的不断完善,其在流处理与搜索分析领域的协同作用将更加显著。
- 数据错误
-
缓存命中率从70%提升至90%,数据库查询减少65%,接口响应时间稳定在150ms内(原为300ms+)。该项目负责开发一个基于Spring Boot的校园交易网站,该平台旨在为学生提供一个安全、便捷的线上交易环境,包括商品展示、求购信息发布、用户登录与验证等功能。引入Redis二级缓存:对商品详情页(PV>1.2k/日)采用缓存击穿防护策略(互斥锁重建),热点数据缓存命中率>95%,QPS为50。(防止恶意刷单)商品发布接口限制每用户10次/分钟(Guava实现),黑名单用户直接拒绝。
-
SparkSession 和 SparkContext 的区别【详细】
-
当Flume消费Kafka出现问题间隔很长时间才发现,此时需要将历史未消费的数据,通过Python脚本重新消费并写入到指定位置,之后在数仓建表等操作,具体代码如下【Kafka --> Python脚本 --> HDFS】

-
在任何以数据为中心的工作中,对SQL有深刻的理解都是成功的关键,尽管这不是工作中最有趣的部分。事实上,除了SELECT FROM WHERE GROUP BY ORDER BY之外,还有更多的SQL方法。你知道的功能越多,操作和查询所需的内容就越容易。
-
2月18日,阿里云在官网宣布,河源数据中心正式对外提供服务。这是华南地区规模最大的绿色数据中心,可容纳超过30万台服务器,作为深圳地域的新可用区为华南地区上百万企业客户提供领先的云计算、人工智能、物联网等服务。
-
企业云计算领导者Nutanix(纳斯达克代码:NTNX)近日宣布,物流行业领导企业嘉里大通 (Kerry EAS) 已采用Nutanix超融合基础架构(HCI)和企业云解决方案,进行企业数据中心的现代化改造。
-
作为云时代的整合服务商,联想为了加快转型,更是推出了“三级火箭”战略:一级火箭,与专业垂直领域合作伙伴合作,建立智慧数据中心;二级火箭,与微软Azure、VMware、红帽等合作,以及自身在OpenStack方面的自研能力,建立智慧的云世界;三级火箭,建立智慧的行业应用。
-
随着数字化的进程,数据的处理、存储和传输得到了飞速的发展。高带宽的需求使得短距互联成了系统发展的瓶颈。受损耗和串扰等因素的影响,基于铜线的电互联的高带宽情况下的传输距离受到了限制,成本也随之上升。而且过多的电缆也会增加系统的重量和布线的复杂度。与电互连相比,基于多模光纤的光互连具有高带宽、低损耗、无串扰和匹配及电磁兼容等问题,而开始广泛地应用于机柜间、框架间和板间的高速互连。
-
随着云计算,大数据和人工智能技术发展,边缘计算发挥着越来越重要的作用,补充数据中心算力需求。计算架构要求多样化,需要不同的CPU架构来满足不断增长的算力需求,同时需要GPU,NPU和FPGA等技术加速特定领域的算法和专用计算。以此,不同CPU架构,不同加速技术应用而生。
-
刚刚获悉,腾讯在光网络设备和数据中心领域的两大硬件自研设计“OPC-4”和“TMDC”顺利通过OCP(Open Compute Project)审核并正式接受为官方开源贡献。这是腾讯在硬件领域的开源设计首次被OCP官方正式认可,同时,腾讯也成为中国首家对OCP有开源贡献的互联网公司。
-
-
-
云+X案例展 | 金融类:荣之联助力君康人寿构建新一代数据中心
近年来,互联网、大数据、云计算和物联网等行业的蓬勃发展,对数据的存储、交换、计算等的应用需求不断增加,使得大数据发展需求下对上游基础设施领域的需求持续旺盛,促进了数据中心(简称“IDC”)需求的不断增加。同时,各国5G技术的发展和商用化的推广又进一步促进了IDC行业爆发增长。未来,IDC行业必将成为物联网、云计算及5G技术的不断完善与发展下又一风口。
-
雪花算法(snowflake) :分布式环境,生成全局唯一的订单号
snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。 这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等。 其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。
数据错误 -
服务器对每个从事IT工作的人来说并不陌生,但是服务器所涉及的各种知识细节,并非大家都十分清楚,为了让大家深入了解服务器的关键知识点,笔者特意抽时间总结了这篇科普文章,旨在帮助读者全面了解服务器。今天内容就从服务器的架构和分类开始。
