
- 相关博文
- 最新资讯
-
SpringBoot + MyBatis-Plus + MySQL(提供任务管理、支付结算)建议使用**乐观锁(version 字段)**或。:UniApp(Vue语法,支持小程序/公众号/APP):Vue + ElementUI(任务审核、财务管理):未使用事务管理任务状态更新,导致并发问题,建议使用。发布任务(填写任务描述、赏金、截止时间)任务状态管理(领取/进行中/已完成)任务验收(用户确认,资金结算)任务审核(平台审核任务)任务匹配(师傅领取任务)任务完成(上传完成材料)任务大厅(筛选可接任务)
-
注意:启动前先将hbase conf目录下的配置文件hbase-env.sh,hbase-site.xml,regionservers(设置regionserver),backup-masters(设置备用master)根据hbase的不同版本如1.x,2.x进行配置。在hbase-env.sh配置文件中需配置hbase占用内存大小,如果虚拟机的物理内存不足会导致无法启动,此时需要查看虚拟机剩余内存和分配给虚拟机的内存大小和配置文件hbase-env.sh的内存分配大小。
-
大数据时代背景下,电商经营模式发生很大改变。在传统运营模式中,缺乏数据积累,人们在做出一些决策行为过程中,更多是凭借个人经验和直觉,发展路径比较自我封闭。而大数据时代,为人们提供一种全新的思路,通过大量的数据分析得出的结果将更加现实和准确。商家可以对客户的消费行为信息数据进行收集和整理,比如消费者购买产品的花费、选择产品的渠道、偏好产品的类型、产品回购周期、购买产品的目的、消费者家庭背景、工作和生活环境、个人消费观和价值观等。通过数据追踪,知道顾客从哪儿来,是看了某网站投放的广告还是通过朋友推荐链接,是新访
-
RabbitMQ 是消息队列领域的经典组件,也是面试中高频考察的中间件之一。本文通过核心概念解析 + 通俗场景类比,帮助读者快速掌握 RabbitMQ 的核心原理与高频面试题答案。场景化回答:用电商案例解释技术原理(如订单、支付、库存)突出设计能力:主动提及方案的优缺点(如镜像队列牺牲性能换高可用)结合项目经验:举例说明如何解决消息丢失或重复消费问题。
-
高校学生奖学金评定系统 选题推荐 Java毕设 Python毕设 大数据毕设 程序定制 适合作为毕业设计 课程设计 实习项目 附源码+安装部署+文档指导
-
【代码】【Rabbitmq】搭建。
-
任何报错都事出有因处理死锁问题思路确认发生死锁的方法--查看并发量--并发量大--大概率是同时操作改张表引发的问题--加乐观锁或者其他关键字可解决--必须明确事务的执行顺序并发量小--大概率是sql引起的问题--找到具体sql--优化sql,重建索引(索引失效引起)
-
1. 通过 FastAPI 接口上传图片并异步处理水印2. 使用 Celery 处理异步任务队列3. 使用 RabbitMQ 作为消息代理4. 支持定时任务: - 每小时自动处理待处理图片 - 每天清理一周前的旧图片5. 支持任务状态查询6. 支持查看计划任务列表
-
Flink介绍——实时计算核心论文之S4论文总结
-
4. 交换机在成功接收到消息会返回ack,未接受到消息会返回nack.且在绑定的回调函数中定义了ack 和 nack的处理逻辑,总结:发送者需要与MQ进行通讯以及确认,大大影响了发送消息的效率,性能也会受到影响,默认出现的异常很低,不用特意去开启.缺点: 当前线程无法向下执行,如果发送消息这行代码一直卡住重连,下面的业务代码就无法执行,发送者在发送给MQ失败的情况下,尝试继续重新连接,1.MQ正确处理发送者发来的消息(到达了MQ),但是。.该回调函数会返回消息,路由失败的原因,消息id等,
-
从市场需求来看,智慧校园系统的兴起是时代发展的必然趋势。它为学校提供了更高效的管理手段,为教师创造了更优质的教学环境,为学生带来了更丰富的学习体验。它开启了教育的新时代,让我们共同期待在智慧校园系统的助力下,教育事业绽放出更加绚烂的光彩。这不仅节省了大量纸张资源,更充分利用了大数据的优势,为教学提供了精准的数据支持,助力老师更好地了解学生的学习情况,实现个性化教学。智慧校园系统作为这场变革的核心力量,正以其强大的功能和创新的理念,为学校的管理、教学和学生的学习带来前所未有的便利与提升,开启了教育的新时代。
数据错误
-
在 Elasticsearch 中,你需要为索引定义一个映射,确保字段可以存储 JSON 格式的数据。通常,你可以使用。
-
在复杂分布式系统设计中,消息队列作为中间件正扮演着越来越重要的角色。本文深入剖析了消息队列的三大核心价值:解耦、异步处理和削峰填谷。当您的系统面临模块间耦合度高、关键操作阻塞主流程、或高并发请求导致服务崩溃等问题时,消息队列或许正是您需要的解决方案。您是否思考过,为什么众多高流量平台能在"秒杀"等极端场景下保持稳定?文章还将探讨消息队列的高可靠性、良好扩展性和灵活性等优势,并简要介绍Kafka、RabbitMQ等主流实现方案。无论是系统架构优化还是性能提升,这篇文章都将为您提供实用的技术洞见。
-
本文详细探讨了基于RabbitMQ的异步通知系统设计与实现。通过将同步通知改为异步处理,解决了响应时间长、系统耦合和高峰期崩溃等问题。采用Topic交换机进行消息路由,实现了不同类型通知的精细分发。通过消息持久化、死信队列和消费者扩展等机制,保障了通知可靠送达。最终实现了响应时间从7秒降至50ms,系统解耦合和高峰期稳定运行,为个人博客提供高效可靠的通知功能。
-
适用场景:官方连接器版本不兼容或需深度定制。实现步骤继承RichSinkFunction@Override// 初始化ES客户端@Overridetry {// 处理异常添加Sink到作业Flink与Elasticsearch的整合为实时数据处理和搜索场景提供了端到端解决方案。通过合理选择连接器、优化配置参数,可构建高性能、高可靠的数据流水线。随着两者生态的不断完善,其在流处理与搜索分析领域的协同作用将更加显著。
- 数据错误
-
缓存命中率从70%提升至90%,数据库查询减少65%,接口响应时间稳定在150ms内(原为300ms+)。该项目负责开发一个基于Spring Boot的校园交易网站,该平台旨在为学生提供一个安全、便捷的线上交易环境,包括商品展示、求购信息发布、用户登录与验证等功能。引入Redis二级缓存:对商品详情页(PV>1.2k/日)采用缓存击穿防护策略(互斥锁重建),热点数据缓存命中率>95%,QPS为50。(防止恶意刷单)商品发布接口限制每用户10次/分钟(Guava实现),黑名单用户直接拒绝。
-
SparkSession 和 SparkContext 的区别【详细】
-
当Flume消费Kafka出现问题间隔很长时间才发现,此时需要将历史未消费的数据,通过Python脚本重新消费并写入到指定位置,之后在数仓建表等操作,具体代码如下【Kafka --> Python脚本 --> HDFS】

-
-
医疗保健、零售、金融、制造业……一文带你看懂大数据对工业领域的影响!...
随着大数据技术的兴起,工业领域在很大程度上发生了变化。智能手机和其他通讯方式的使用迅速增加,使得每天都能收集大量数据。以下是大数据对工业领域的影响。
-
每当提到区块链一词时,许多人都会将其与比特币等加密货币联系起来。这项技术通过加快交易速度、提供隐私和透明以及其他更多功能,确实改变了虚拟货币的世界。
-
MySQL 狠甩 Oracle 稳居 Top1,私有云最受重用,大数据人才匮乏! | 中国大数据应用年度报告...
科技长河,顺之者昌,错失者亡。在这个技术百态之中,中国专业的 IT 社区CSDN 创始人&董事长蒋涛曾多次在公开活动中表示,开发者是对技术变革最敏感的人群。这不仅源于开发者、工程师创建了助力这个时代蜕变的工具,他们还极具前瞻性地缔造了真实世界之外的虚拟、数字化世界。
-
根据《哈佛商业评论》的说法,数据科学家是21世纪最性感的工作。在现在这个大数据的世界中,数据科学家们用AI 或深度学习方法来发掘宝贵的商业见解。
-
相信对于大部分的大数据初学者来说,一定遇见过Hadoop集群无法正常关闭的情况。有时候当我们更改了Hadoop内组件的配置文件后,必须要通过重启集群来使配置文件生效。
-
这篇分享主要总结了数据从业人员在实践中可能遇到的陷阱与缺陷。跟其他新起的行业一样,数据科学从业人员需要不停的去考虑现在,考虑未来;需要不断的斟酌工作方法的合理性,正确性。思索不断,才能前行。
-
2月18日,阿里云在官网宣布,河源数据中心正式对外提供服务。这是华南地区规模最大的绿色数据中心,可容纳超过30万台服务器,作为深圳地域的新可用区为华南地区上百万企业客户提供领先的云计算、人工智能、物联网等服务。
-
如今,Python真是无处不在。尽管许多看门人争辩说,如果他们不使用比Python更难的语言编写代码,那么一个人是否真是软件开发人员,但它仍然无处不在。
-
随着云计算,大数据和人工智能技术应用,单靠CPU已经无法满足各行各业的算力需求。海量数据分析、机器学习和边缘计算等场景需要计算架构多样化,需要不同的处理器架构和GPU,NPU和FPGA等异构计算技术协同,满足特定领域的算法和专用计算需求。今天,笔者带大家详细了解下FPGA技术。 FPGA是英文Field Programmable Gate Array简称,即现场可编程门阵列。它是在PLA、PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
数据错误 -
随着云计算,大数据和人工智能技术发展,边缘计算发挥着越来越重要的作用,补充数据中心算力需求。计算架构要求多样化,需要不同的CPU架构来满足不断增长的算力需求,同时需要GPU,NPU和FPGA等技术加速特定领域的算法和专用计算。以此,不同CPU架构,不同加速技术应用而生。
-
云+X案例展 | 电商零售类:WakeData助力叁拾加数字化变革
在新零售时代下,各行业都在寻求数字化转型、发展智慧零售模式。而作为新零售的主赛道生鲜行业来说,运营端需要从即时性消费需求出发,加强线下场景布局,提升用户全渠道消费体验。其中水果是生鲜里消费者喜爱程度及消费频次较高的品类,具有很强的互联网基因,但水果行业的数据构成极其复杂,要考虑很多变量,这就需要借助线下大数据构建数字化运营及经营系统。
-
云+X案例展 | 金融类:金山云为新网银行重塑金融服务提供云计算动力
作为国内第三家、中西部首家互联网银行,新网银行从创立起,就注定将走上一条与众不同之路。按照新网银行高层的话说,“与其说我们是一家银行,不如说我们是一家拿了银行牌照、专注于大数据驱动的金融科技公司”,这无疑是点出了新网银行的特别之处——依靠大数据风控和金融科技能力来驱动业务运营,实现金融和科技的融合。
-
云+X案例展 | 金融类:荣之联助力君康人寿构建新一代数据中心
近年来,互联网、大数据、云计算和物联网等行业的蓬勃发展,对数据的存储、交换、计算等的应用需求不断增加,使得大数据发展需求下对上游基础设施领域的需求持续旺盛,促进了数据中心(简称“IDC”)需求的不断增加。同时,各国5G技术的发展和商用化的推广又进一步促进了IDC行业爆发增长。未来,IDC行业必将成为物联网、云计算及5G技术的不断完善与发展下又一风口。
-
近日腾讯云在北京举行大数据AI新品发布会。会上,腾讯云带来了在大数据与AI领域的最新研究成果,包括AI换脸甄别技术AntiFakes、腾讯星图以及企业画像平台等七大重磅新品,并对AI、大数据产品进行全线升级,致力于为用户带来更精细化的应用场景、更强大的技术能力以及更低的应用成本,全面降低企业AI技术应用门槛。
数据错误 -
近日在腾讯云AI大数据新品发布会上,腾讯云副总裁王龙向听众全面介绍了当前腾讯云数据智能服务的全景布局。针对目前整体AI行业的发展趋势,他表示过去一招鲜的发展模式已经难以为继,取而代之的是真正能够产生价值的、端到端的、全面的AI解决方案,并且随着技术的不断演进,企业进入和使用数据智能领域的门槛将继续大幅降低。
-
阿里云提出“云+Fintech”新金融战略 已助上万家金融机构上云
12月3日,阿里云峰会广东期间,阿里巴巴副总裁、阿里云智能数字政府事业部总裁许诗军表示,目前阿里云已成为中国数字政府大数据整体市场第一,也是数字政府大数据基础平台软件市场第一。
-
12月3日,阿里云峰会广东期间,阿里巴巴副总裁、阿里云智能数字政府事业部总裁许诗军表示,目前阿里云已成为中国数字政府大数据整体市场第一,也是数字政府大数据基础平台软件市场第一。
-
2019年技术盘点云数据库篇(一):UCloud专家谈云数据库:千锤百炼 云之重器
公有云逐渐成为企业运行 IT 设施的新趋势,那么作为企业最核心的系统—数据库,数据上云也成为大数据时代的必然选择。对企业来说,数据可视为其命脉,因此数据迁移上云就意味着将企业“命脉”搬到云平台。事实上,数据上云有两种形式,数据库直接上云或者选择云数据库,而云数据库利用其云原生的优势具备了许多过去数据库产品不具备的优势,包括可靠性、弹性、存储容量以及成本等,正逐渐被更多的企业所接受。
