- 相关博文
- 最新资讯
-
本文探讨了Java在大数据分布式存储中的应用,针对金融、医疗等行业的痛点问题提出解决方案。在金融高频交易场景中,Java方案通过内存缓存和异步写入将延迟从52ms降至8ms;银行灾备系统实现15秒故障检测和45秒切换,满足监管要求;医疗领域则平衡隐私保护与实时调阅,CT影像调阅时间从30秒缩短至1.2秒。研究基于18个行业案例,展示了Java如何通过全行业适配、数据安全可控和智能调度等核心能力,将存储延迟降低90%,扩容停机时间从8小时缩短至100ms,有效解决企业面临的存储性能瓶颈问题。
-
Hadoop Distribured File System,简称HDFS,是一个分布式文件系统(1)NameDode:负责管理HDFS的元数据,如文件和目录结构,以及文件块的位置。它是HDFS的核心控制整个文件系统的操作。(2)DataNode存储实际的数据块(block),负责数据的读写操作,并定期向NameNode报告其状态。(3):定期备份NameNode 的元数据,以防止 NameNode崩溃导致的数据丢失。Map和Reduce(1)Map:将要计算的数据拆分。
-
Redis(SETNX + RedLock)、ZooKeeper(临时节点 + Watch机制)。K8s在大促中的应用(HPA自动扩缩容)、Serverless(适合定时任务/日志分析)。随机过期时间 + 多级缓存(本地→Redis→DB)+ 熔断降级(Sentinel)。延迟双删(先删缓存→更新DB→再删缓存)、订阅Binlog(Canal监听变更)。保证可见性(强制主存读取)和有序性(禁止指令重排序),但不保证原子性(如。用STAR法则描述项目:背景(S)、任务(T)、行动(A)、结果(R)。
-
本文结合 21 个案例(含 70 个极端天气站台),详解 Java 大数据在智能公交全场景的应用。极端天气预测准确率 88%,暴雪天滞留降 61%,车型适配让超载率从 25%→6%,附完整代码。
-
然而,传统的纸质SOP管理方式已经无法满足现代企业的需求,数字化的SOP工具正在成为企业运营管理的新趋势。支持自定义数据库、模板创建和多人协作功能。其丰富的模板库包含专门的SOP管理模板,能够快速搭建标准化作业体系,特别适合追求个性化和灵活性的现代企业。其简洁的设计和直观的操作方式降低了学习成本,特别适合小型团队和偏好简单工具的用户群体进行基础的流程管理。愿您在标准化运营的道路上找到最完美的数字化助手,实现从经验驱动到流程驱动的企业管理转型,让高效、规范、可持续的运营模式成为您企业竞争优势的核心基石。
-
在日常开发中,我们经常需要对数据库中的数据进行分页展示。特别是当表数据量达到几十万甚至上百万级时,传统的 `LIMIT` 分页方式会面临严重的性能瓶颈。今天,我将分享一个真实的性能优化案例,通过模拟大页码查询的现场,从90秒缩短到 965 毫秒,显著提升了查询效率。本篇文章将从问题出现的原因、索引原理、优化思路和最终实战效果等方面,为你全面讲解如何高效处理 MySQL 大数据分页查询问题。
-
打开页面后选择对应的组件及版本即可!
-
《物流管理工具全景分析与选型指南》 摘要:本文系统梳理数字经济时代物流管理工具的战略价值与技术演进,构建四象限分类模型(协作型/专业型×基础/高级)。提出包含分布式处理能力(TPS≥5000)、混合云兼容性等关键指标的选型框架。研究显示,采用先进物流工具的企业可降低运营成本,异常响应速度提升2-3倍,其中智能WMS系统能实现拣货效率提升。为不同规模企业提供从敏捷协作到专业仓储的数字化转型路径建议。
-
使用的虚拟机是roucky8,需要下载java,rqm四个包可以在/etc下找到使用rpm -ivh *.rpm 安装所有实验开始前确保时间正确如果时间不正确修改时间2.配置文件第一个文件:vim /etc/hosts第二个文件 :cd etc/elasticsearch/需要修改的地方:启动服务并查看java状态logstash安装在了 /usr/share/logstash/这里ln -spwd第三个文件: vim /etc/kibana/kibana.yml。
-
DL4J(Deeplearning4j)和DJL(Deep Java Library)都是基于Java生态的深度学习框架,但二者在设计理念、技术架构和应用场景上有显著差异。以下从六个维度进行综合对比:DL4JDJL选DL4J若:选DJL若:DL4J:DJL:💡 选择建议:
-
MongoDB与MySQL的对比分析表明两种数据库各有适用场景:MongoDB适合灵活schema、高并发写入和文档嵌套,而MySQL更适合固定结构、强一致性和复杂关联查询。MongoDB社区版采用SSPL许可证开源,企业版收费。替代方案建议包括CouchDB、Elasticsearch等。ES与MongoDB的核心差异在于ES专注于搜索分析,而MongoDB侧重通用存储,二者常以互补架构配合使用。技术选型需根据具体业务需求决定,如搜索场景可选ES,事务需求则需MySQL或MongoDB企业版。
-
本文介绍了Python中迭代器和生成器的区别及其实现方式。迭代器通过__iter__()和__next__()方法实现惰性计算,适合处理大数据集(如车牌数据集CCPD),能节省内存并支持自定义遍历逻辑。生成器则使用yield关键字简化迭代器创建,适用于需要按需生成值的场景。文章通过自定义迭代器案例展示了数据处理流程,包括文件筛选、坐标解析和归一化操作,并说明了如何利用迭代器协议实现流式处理大数据量。两者核心区别在于:迭代器是更底层的协议,生成器是迭代器的语法糖实现。
-
本文详细解析了 Elasticsearch 快照恢复 API 的三个核心参数:indices(指定恢复的索引)、rename_pattern(定义重命名匹配模式)和rename_replacement(定义重命名规则)。通过多个实际案例展示了参数组合使用效果,包括恢复特定索引、通配符匹配、排除索引以及复杂重命名等场景。文章特别强调了索引命名的规范要求,解释了 Elasticsearch 对字符长度和类型的限制原因,包括安全性、性能、兼容性等方面的技术考量。
-
本文介绍了Yocto项目中的关键构建任务流程,主要包括:1)获取源码(do_fetch)和解包(do_unpack);2)应用补丁(do_patch)解决设备适配问题;3)系统根目录准备(do_prepare_recipe_sysroot)实现配方间共享;4)配置(do_configure)和编译(do_compile)过程;5)安装(do_install)和打包(do_package)生成目标文件;6)质量检查(do_package_qa)和根文件系统生成(do_rootfs);7)最终镜像创建(do_i
-
本文AI产品专家三桥君系统阐述了AI产品经理的核心方法论:1)精准定位行业痛点,如酒店业的服务效率问题;2)构建"精专"数据策略,避免通用数据"水土不服";3)推动技术落地需充当业务与技术"翻译官";4)通过可量化ROI证明价值;5)采用SaaS模式降低使用门槛;6)以开放API构建行业生态
-
你就能访问 Kibana UI,查看 Linux 上 Elasticsearch 的数据啦。elasticsearch.hosts: ["<远程ES服务器地址:端口>"]elasticsearch.username: "<用户名>"elasticsearch.password: "<密码>"从 Elastic 官方下载页面选择对应版本(server.host: "<本地主机地址>"
-
数据仓库和数据库是企业数据管理的两大核心工具。数据库主要负责实时业务处理(OLTP),确保日常交易高效运行;数据仓库则专注历史数据分析(OLAP),支持战略决策。关键区别在于:数据库采用规范化存储,强调实时性和事务处理;数据仓库采用反规范化结构,侧重数据整合和趋势分析。企业实际应用中,二者常配合使用:数据库支撑业务系统运转,数据仓库则从多个数据源(包括数据库)抽取数据进行分析。选择时需考虑业务需求、数据特征和成本效益,通常数据库满足日常操作需求,数据仓库适合大规模历史数据分析场景。
-
问题摘要:Hive任务在处理90天数据(1440个分区)时仅生成400+个reduce任务,与预期不符(应等于分区数)。单日处理16个分区时却能正确匹配reduce数量。
-
一篇文章带你入门 Spring AI 知识库开发,选用 ES 作为 AI 向量数据库。
-
找到-XX:+UseConcMarkSweepGC 并修改为 -XX:+UseG1GC。一、使用一下命令找到你 jvm.options文件配置 的位置。再使用 docker ps -a 查看运行中和运行失败的容器。三、将失败的elasticsearch 容器 移除。二、vi/vim这个文件 jvm.options。再使用docker logs 容器id查看日志。使用docker ps 查看运行中的容器。没有elasticsearch。启动完成后返回一个序列id。创建挂载的文件和配置。

-
DevOps:从「蒸汽时代」到「高铁时代」,SUNMI DevOps转型之路
商米科技成立于 2013 年,总部位于上海市杨浦区创智天地,是一家具有产品创新基因和互联网基因的公司。商米在短时间内迅速成长为一家近1000人的企业,产品研发人数占比一度超过70%。
-
十大类疫情服务紧缺 阿里广发英雄帖抗疫小程序开发者最高可获50万元奖励
全民积极响应国家抗击新冠肺炎疫情的号召,正催生出越来越多新的互联网服务缺口。基于对用户、政府、企事业单位抗疫服务需求的紧缺情况调查,支付宝今日面向社会各界开发者发布“10大疫情期最急需服务开发清单”,号召更多开发者投入进来开发更多服务,解决社会问题。据了解,清单涵盖了口罩预约、疫情上报、社区出入管理、代跑腿、餐饮外卖等疫情防护及便民生活类服务。
-
1月7日,腾讯宣布正式启动“SaaS技术联盟”,联合金蝶、用友、有赞、微盟、销售易、六度人和、道一、肯耐珂萨(KNX)等外部SaaS厂商,以及企业微信、腾讯会议、企点等腾讯内部SaaS产品,共建技术中台。同时,工信部信软司相关领导在发布会上表示,将指导联盟成员开展中国产业互联网发展联盟SaaS技术专委会筹备工作。
-
2020年第一个工作日,“达摩院2020十大科技趋势”发布。这是继2019年之后,阿里巴巴达摩院第二次预测年度科技趋势。 回望2019年的科技领域,静水流深之下仍有暗潮涌动。AI芯片崛起、智能城市诞生、5G催生全新应用场景……达摩院去年预测的科技趋势一一变为现实。科技浪潮新十年开启,围绕AI、芯片、云计算、区块链、工业互联网、量子计算等领域,达摩院继续提出最新趋势,并断言多个领域将出现颠覆性技术突破。
-
刚刚获悉,腾讯在光网络设备和数据中心领域的两大硬件自研设计“OPC-4”和“TMDC”顺利通过OCP(Open Compute Project)审核并正式接受为官方开源贡献。这是腾讯在硬件领域的开源设计首次被OCP官方正式认可,同时,腾讯也成为中国首家对OCP有开源贡献的互联网公司。
-
云+X案例展 | 电商零售类:WakeData助力叁拾加数字化变革
在新零售时代下,各行业都在寻求数字化转型、发展智慧零售模式。而作为新零售的主赛道生鲜行业来说,运营端需要从即时性消费需求出发,加强线下场景布局,提升用户全渠道消费体验。其中水果是生鲜里消费者喜爱程度及消费频次较高的品类,具有很强的互联网基因,但水果行业的数据构成极其复杂,要考虑很多变量,这就需要借助线下大数据构建数字化运营及经营系统。
-
云+X案例展 | 金融类:金山云为新网银行重塑金融服务提供云计算动力
作为国内第三家、中西部首家互联网银行,新网银行从创立起,就注定将走上一条与众不同之路。按照新网银行高层的话说,“与其说我们是一家银行,不如说我们是一家拿了银行牌照、专注于大数据驱动的金融科技公司”,这无疑是点出了新网银行的特别之处——依靠大数据风控和金融科技能力来驱动业务运营,实现金融和科技的融合。
-
“我早就预言了互联网。1975年,所有的技术都已经准备好了;1985年,所有的技术都应该很平常了;而直到1995年,居然才开始起飞。看来,我对时间的规划很糟糕。” 被誉为互联网之父的鲍伯·泰勒曾这样自我解嘲。
-
“与合作伙伴‘共创’是产业互联网发展最重要的路径,也是最佳的路径。”腾讯公司高级执行副总裁、云与智慧产业事业群总裁汤道生在2019腾讯云启产业生态年会上给出了腾讯的答案。
-
云+X案例展 | 金融类:荣之联助力君康人寿构建新一代数据中心
近年来,互联网、大数据、云计算和物联网等行业的蓬勃发展,对数据的存储、交换、计算等的应用需求不断增加,使得大数据发展需求下对上游基础设施领域的需求持续旺盛,促进了数据中心(简称“IDC”)需求的不断增加。同时,各国5G技术的发展和商用化的推广又进一步促进了IDC行业爆发增长。未来,IDC行业必将成为物联网、云计算及5G技术的不断完善与发展下又一风口。
-
云+X案例展 | 民生类:智领云数据中台为“健康武汉”增砖添瓦
与前一个十年相比,如今企业对大规模应用的需求产生了巨大变化,例如: 在互联网领域内,高度连接的应用在海量数据的情况下对于可靠性、性能以及连接性的要求有了数个数量级的提高; 快速响应商业洞见; 快速响应市场/客户需求; 对于企业来说数据的存储、收集和分析变得至关重要,对前沿科技的技术(机器学习,人工智能)支持变得至关重要。
-
“起初阿帕创造阿帕网络。 阿帕网络是空虚混沌。渊面黑暗。 阿帕的灵运行在网络里面。阿帕说:‘要有一个协议。’就有了一个协议。阿帕看它是好的。 阿帕说:‘要有更多的协议。’事就这样成了。阿帕看这是好的。 阿帕说:‘要有更多的网络。’事就这样成了。”
-
在人类的历史长河中,我们这一代人是最幸运的一代,因为我们生活在一个智慧飞扬的时代。 这个时代最伟大的发明是什么?或许每个人心中都有不同的答案。在小灰看来,这个最伟大的发明有两个,一个是计算机,一个是互联网。 今天,小灰想和大家谈一个比较大的话题:中国的互联网。
-
互联网公司,可能是存在刻板印象最多的地方; 不管是来自外部的,还是内部的。 人们对互联网公司里的每个工种都有自己“心里的那个模样”; 而实际上,很多时候却不是想的那样...
-
“我们希望帮助工厂从原来的单点变成全产业链、全价值链、全要素的融合,变成数字化智能化的工厂,并为工业产品带来智能化。”库伟表示。
-
不管我们是不是技术迷,无可否认的是,现在我们各自的生活都对互联网产生了高度依赖。在这个各种社交软件都离不开物联网设备的社会,它们以各式各样的方式将我们与网络世界连接起来。
-
不管我们是不是技术迷,无可否认的是,现在我们各自的生活都对互联网产生了高度依赖。在这个各种社交软件都离不开物联网设备的社会,它们以各式各样的方式将我们与网络世界连接起来。
-
随着移动互联网、信息技术等创新发展,数据量呈指数级爆发式增长并表现在多个方面,即规模扩张、结构多元化的数据新形态;业务升级转型带来的场景化需求数据新部署;市场细分带来的数据应用新模式以及承载行业发展,发挥核心资源池地位的数据新价值等。据IDC预测,全球数据圈将从2018年的33ZB增至2025年的175ZB,实现5倍以上的增长。在新数据时代,数据在数据形态、部署环境、应用模式和价值需求等方面均出现了更为精细化的需求,应对数据爆发压力,欲将海量的连接、微秒级的延迟、极高的性能体验为我所用,创新存储价值则变得势在必行。
-
俄罗斯有苏联时期留下的强大的科技人才培养体系,但由于国内管制严格和经济下行导致人才流失严重,再加上俄罗斯人口稀少,最终没有发展出跟美国、中国一样规模的互联网巨头。 但俄罗斯的科技实力还是不容小觑,除了强大的人才基础,其区块链技术在全球也是名列前茅,对这只沉睡的北极熊我们一定不能掉以轻心。
-
“面试造火箭,入职拧螺丝!” 已经是各大互联网公司招聘的常态,为了应对如今越演越烈的面试形势,程序员一个个都变成了表演大师。 俗话说面试如戏,全靠演技!
