- 相关博文
- 最新资讯
-
本文系统阐述 Java 大数据在智能安防门禁系统中的深度应用,涵盖多生物特征融合架构设计、核心代码实现、头部企业实战案例及前沿技术探索,展现 Java 技术在构建高可靠、智能化安防体系中的核心价值。
-
本文系统阐述 Java 大数据在智能教育自适应学习系统中的深度应用,涵盖评估指标体系构建、核心代码实现、头部案例及前沿技术探索,展现 Java 在推动教育智能化转型中的核心价值与创新实践。
-
数理思维在医疗领域的应用正快速推动行业变革。本文探讨了数理思维如何通过数学模型、逻辑推理和统计分析辅助医疗决策,提高诊断准确性和治疗效率。研究梳理了数理思维从早期统计分析到现代AI模型的历史演变,分析了其在医学影像、疾病预测和个性化治疗等领域的应用现状。随着大数据和深度学习技术的发展,数理思维正从辅助工具发展为医疗决策的核心支撑,但也面临数据隐私、算法透明度等挑战。未来,数理思维将持续推动医疗行业向更科学、精准、高效的方向发展。
-
详解SpringBoot整合RabbitMQ之通配符模式。
-
通过简单案例快速了解 GO 操作 RabbitMQ
-
本文以 IEEE 标准为依托,结合国家电网雄安、德国 E.ON 等全球标杆项目,系统阐述 Java 在新能源微电网与虚拟电厂中的全生命周期技术应用,涵盖数据融合、智能算法、区块链协同及自主控制等前沿领域,提供可复用的工业级解决方案。
-
LangChain Core定义了LangChain生态中最核心的最基础的抽象和LCEL原语(LangChain表达式语言)。
-
在大数据系统中,Sqoop 就像是一位干练的“数据搬运工”,帮助我们把 MySQL、Oracle 等数据库里的数据快速、安全地导入到 Hadoop、Hive 或 HDFS 中,反之亦然。这个专栏从基础原理讲起,配合实战案例、参数详解和踩坑提醒,让你逐步掌握 Sqoop 的使用技巧。不管你是初学者,还是正在构建数据管道的工程师,都能在这里找到实用的经验和灵感。
-
针对KafkaConsumer单线程限制,本文提出两种多线程实现方案:线程封闭方式:每个线程创建独立KafkaConsumer实例,并发度受分区数限制。代码示例展示了通过KafkaConsumerThread类实现多线程消费。消息处理多线程:在方案一基础上增加线程池处理消息,使用RecordsHandler类异步处理消息记录,需配合共享offsets实现提交。该方案进一步提升消费速度,但需注意线程安全。两种方案均通过代码示例说明实现细节,适用于不同消费场景需求。
-
通过实际例子快速了解 GO+RabbitMQ+gin+gorm
-
《Java支付系统高并发架构设计全解析》本文通过模拟5轮技术面试,系统讲解了支付平台的高并发架构设计要点。涵盖支付核心流程(分布式锁、幂等性)、高并发优化(Redis双层缓存、Kafka批量发送)、分布式事务(TCC模式)、JVM调优(G1GC参数配置)等核心技术,并给出分库分表、灰度发布、风控系统等场景解决方案。文章突出业务与技术结合,如双11大促下的限流降级策略,银行对接时的对账系统设计,既展示面试应答技巧,又提供可落地的架构方法论,适合Java中高级开发者学习支付系统设计精髓。
数据错误
-
将针对 C# 高级编程提供更多高频面试题,聚焦于高级概念(异步编程、内存管理、设计模式、.NET 核心特性等),并为每个概念提供详细代码示例或深入讲解,以确保清晰且实用。IAsyncEnumerable
是 C# 8.0 引入的特性,用于异步迭代数据流,适合处理大数据集、数据库查询或流式数据(如网络流、文件读取)。Memory :类似 Span ,但支持堆内存,适合异步场景(如异步方法中的内存管理)。Span :表示连续内存块(栈或堆),只读或可写,适合同步操作。如何在异步方法中使用? -
本文通过5轮模拟面试,详细展示了广告投放平台的技术架构设计要点。涵盖SpringBoot微服务、Kafka消息队列、Redis缓存、Flink实时计算等核心技术栈,重点解析了高并发场景下的分布式锁设计、JVM调优策略和系统稳定性保障方案。面试采用STAR模型作答,体现了DDD领域驱动设计思想与业务场景的深度结合,包括竞价引擎、反作弊系统等核心模块的实现方案。文章还展望了亿级QPS架构、AI广告等前沿技术方向,为Java开发者提供了从基础到进阶的完整技术面试参考框架。
-
本文模拟了一场互联网保险系统开发岗位的技术面试,围绕Java、SpringBoot、MyBatis、Redis、Kafka等核心技术展开五轮深度问答。从基础技术栈到分布式系统、缓存优化、微服务架构,逐步考察候选人小明的技术广度和深度。面试涵盖多线程安全、JVM调优、RESTful API设计、SQL优化、消息队列应用等关键知识点,并结合保险业务场景探讨系统架构设计、性能排查、数据一致性和安全性等实际问题。通过结构化的问题解析,展现了如何将技术能力与业务价值相结合,为开发高并发、高可用的互联网保险系统提供解决
-
本文摘要:深度学习中的CNN架构剖析与实践指南 文章系统解析了CNN的核心组件:1)卷积层作为特征提取器;2)归一化层优化训练过程;3)激活函数引入非线性。针对工程实践,提供了数据增强策略矩阵和学习率调度方案,并给出典型问题(如NaN值和过拟合)的排查方法。通过可视化实例和代码片段,展示了传统方法在图像分类中的局限性,突出了CNN在自动特征提取和泛化能力上的优势。文章兼具理论深度与实践价值,为CNN学习者提供了全面的技术参考。
-
Java后端系统的问题排查离不开系统化思维和高效工具链。建议开发者熟练掌握JVM分析工具、链路追踪、监控报警、日志分析等能力。面对复杂业务场景,需结合技术栈深入理解各组件工作原理,快速定位并解决问题。持续总结排查经验,不断优化系统架构与运维流程,是保障稳定高可用服务的关键。本文面向Java开发者,系统梳理互联网大厂Java后端技术栈(含Spring Boot、Redis、Kafka等)在真实业务场景下的常见异常和性能问题,结合具体排查思路、工具、案例,帮助读者提升线上问题定位与系统调优能力。
数据错误
-
RabbitMQ作为最流行的开源消息代理之一,在后端系统中扮演着至关重要的角色。消息持久化是确保系统可靠性的关键特性,特别是在面对系统崩溃、网络故障等异常情况时。本文旨在全面分析RabbitMQ的消息持久化存储机制,帮助开发者根据业务需求做出合理的存储选型决策。本文将首先介绍RabbitMQ消息持久化的基本概念,然后深入分析不同的存储选型方案,包括内存、磁盘和混合模式。接着我们会探讨相关的算法原理和实现细节,并通过实际代码示例展示配置方法。最后,我们将讨论不同业务场景下的最佳实践和未来发展趋势。
-
使用
可以彻底改变 WPF 窗口标题栏的默认样式,打造个性化的界面风格。-- 定义标题区域与客户区域 --> -- 标题栏高度 -->-- 客户区域,占据剩余空间 -->-- 标题栏内容 --> -- 客户区域内容 --> -
大数据领域的数据工程架构设计目的在于构建一个高效、稳定、可扩展的系统,以应对海量数据的采集、存储、处理和分析需求。其范围涵盖了从数据源到数据消费者的整个数据生命周期,包括数据的采集层、存储层、处理层和应用层。通过合理的架构设计,能够提高数据处理的效率,降低系统的维护成本,为企业和组织提供有价值的数据洞察。本文将按照以下结构进行阐述:首先介绍大数据领域数据工程架构设计的核心概念与联系,包括数据流程、组件关系等;接着详细讲解核心算法原理和具体操作步骤,并用 Python 代码进行示例;
-
它不能直接使用elastic超级用户账号来运行Kibana,因为这是一个安全风险。我们需要使用服务账号(Service Account)来代替。若未设置,启动时可能因找不到 tools.jar 报错。禁止使用 elastic 超级用户运行 Kibana!

-
随着云计算,大数据和人工智能技术应用,单靠CPU已经无法满足各行各业的算力需求。海量数据分析、机器学习和边缘计算等场景需要计算架构多样化,需要不同的处理器架构和GPU,NPU和FPGA等异构计算技术协同,满足特定领域的算法和专用计算需求。今天,笔者带大家详细了解下FPGA技术。 FPGA是英文Field Programmable Gate Array简称,即现场可编程门阵列。它是在PLA、PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
-
随着云计算,大数据和人工智能技术发展,边缘计算发挥着越来越重要的作用,补充数据中心算力需求。计算架构要求多样化,需要不同的CPU架构来满足不断增长的算力需求,同时需要GPU,NPU和FPGA等技术加速特定领域的算法和专用计算。以此,不同CPU架构,不同加速技术应用而生。
-
腾讯多媒体实验室:基于三维卷积神经网络的全参考视频质量评估算法
腾讯有多个视频业务线,点播视频有腾讯视频、企鹅影视,短视频有微视、K歌,直播类有Now直播、企鹅电竞,实时传输类有QQ和微信的音视频通话、无线投屏和腾讯会议等。
-
分治算法,即分而治之:把一个复杂问题分成两个或更多的相同或相似子问题,直到最后子问题可以简单地直接求解,最后将子问题的解合并为原问题的解。归并排序就是一个典型的分治算法。 在这篇文章中我们将先介绍分治算法的「三步走套路」,然后通过经典的归并排序算法体验一番分治算法的核心,最后再通过真题演练一试身手!
-
11月28日,阿里云正式开源机器学习平台 Alink,这也是全球首个批流一体的算法平台,旨在降低算法开发门槛,帮助开发者掌握机器学习的生命全周期。
-
点赞功能大家都不会陌生,像微信这样的社交产品中都有,但别看功能小,想要做好需要考虑的东西还挺多的,如海量数据的分布式存储、分布式缓存、多IDC的数据一致性、访问路由到机房的算法等等。
-
如果有人要问2019年技术圈什么最热,“中台”绝对当仁不让,从观望到试水,很多公司做出了从 0 到 1 的探索。众所周知,“中台”一词在国内最早是由阿里提出来的,2015 年,马云参观芬兰游戏公司Supercell,观察其每个游戏开发的小团队只有六七个人,但开发与停止的速度之快,让马云即惊讶又好奇。得知如此快的原因是开发者将游戏开发过程中用到的一些通用的游戏素材和算法整理出来,作为工具提供给小团队使用,使得同一套工具可以支持多个游戏研发团队。这样的架构模式给了马云很大的震撼和启发,这也催生了阿里巴巴的中台战略,加之越来越的企业跟随其热度,寄希望于借助中台推动业务增长以快速实现数字化转型, “中台”得以风靡。
-
雪花算法(snowflake) :分布式环境,生成全局唯一的订单号
snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。 这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等。 其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。
-
-
排序算法这么多,这里先将排序算法做个简单分类: 一、可以根据待排序的数据量规模分类: 内部排序:在排序过程中,待排序的数据能够被全部加载进内存中 外部排序:待排序的数据太大,不能全部同时放入内存,排序过程中需要内存与外部存储交换数据
数据错误 -
Q:什么是Spark?A:简单理解,Spark是在Hadoop基础上的改进,是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。
