• 相关博文
  • 最新资讯
加载中...
  • 云漫圈 | 什么是字符串匹配算法?

    什么是字符串匹配算法?

    2020-02-12 0
  • 详解异构计算FPGA基础知识

    随着云计算,大数据和人工智能技术应用,单靠CPU已经无法满足各行各业的算力需求。海量数据分析、机器学习和边缘计算等场景需要计算架构多样化,需要不同的处理器架构和GPU,NPU和FPGA等异构计算技术协同,满足特定领域的算法和专用计算需求。今天,笔者带大家详细了解下FPGA技术。 FPGA是英文Field Programmable Gate Array简称,即现场可编程门阵列。它是在PLA、PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。

    2020-01-14 0
  • 详解GPU技术关键参数和应用场景

    随着云计算,大数据和人工智能技术发展,边缘计算发挥着越来越重要的作用,补充数据中心算力需求。计算架构要求多样化,需要不同的CPU架构来满足不断增长的算力需求,同时需要GPU,NPU和FPGA等技术加速特定领域的算法和专用计算。以此,不同CPU架构,不同加速技术应用而生。

    2020-01-02 0
  • 腾讯多媒体实验室:基于三维卷积神经网络的全参考视频质量评估算法

    腾讯有多个视频业务线,点播视频有腾讯视频、企鹅影视,短视频有微视、K歌,直播类有Now直播、企鹅电竞,实时传输类有QQ和微信的音视频通话、无线投屏和腾讯会议等。

    2019-12-24 0
  • 搞定面试算法系列 | 分治算法三步走

    分治算法,即分而治之:把一个复杂问题分成两个或更多的相同或相似子问题,直到最后子问题可以简单地直接求解,最后将子问题的解合并为原问题的解。归并排序就是一个典型的分治算法。 在这篇文章中我们将先介绍分治算法的「三步走套路」,然后通过经典的归并排序算法体验一番分治算法的核心,最后再通过真题演练一试身手!

    2019-12-13 0
  • 全球首个!阿里云开源批流一体机器学习平台Alink

    11月28日,阿里云正式开源机器学习平台 Alink,这也是全球首个批流一体的算法平台,旨在降低算法开发门槛,帮助开发者掌握机器学习的生命全周期。

    2019-11-28 0
  • 微信几亿人在线的点赞、取消点赞系统,用Redis如何实现?

    点赞功能大家都不会陌生,像微信这样的社交产品中都有,但别看功能小,想要做好需要考虑的东西还挺多的,如海量数据的分布式存储、分布式缓存、多IDC的数据一致性、访问路由到机房的算法等等。

    2019-11-27 0
  • 数据中台送到家 企业数字化转型“输血”变“造血”

    如果有人要问2019年技术圈什么最热,“中台”绝对当仁不让,从观望到试水,很多公司做出了从 0 到 1 的探索。众所周知,“中台”一词在国内最早是由阿里提出来的,2015 年,马云参观芬兰游戏公司Supercell,观察其每个游戏开发的小团队只有六七个人,但开发与停止的速度之快,让马云即惊讶又好奇。得知如此快的原因是开发者将游戏开发过程中用到的一些通用的游戏素材和算法整理出来,作为工具提供给小团队使用,使得同一套工具可以支持多个游戏研发团队。这样的架构模式给了马云很大的震撼和启发,这也催生了阿里巴巴的中台战略,加之越来越的企业跟随其热度,寄希望于借助中台推动业务增长以快速实现数字化转型, “中台”得以风靡。

    2019-11-14 0
  • 雪花算法(snowflake) :分布式环境,生成全局唯一的订单号

    snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。 这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等。 其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。

    2019-11-05 0
  • 看完秒懂的排序算法

    排序算法这么多,这里先将排序算法做个简单分类: 一、可以根据待排序的数据量规模分类: 内部排序:在排序过程中,待排序的数据能够被全部加载进内存中 外部排序:待排序的数据太大,不能全部同时放入内存,排序过程中需要内存与外部存储交换数据

    2019-10-28 0
  • 数据错误
  • 【面试妥了】史上最全Spark面试题

    Q:什么是Spark?A:简单理解,Spark是在Hadoop基础上的改进,是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。

    2019-10-17 0