
- 相关博文
- 最新资讯
-
全文1.5万字,建议阅读时间35min。业务埋点和数据分析是在用户行为和业务数据上进行跟踪、收集和分析的关键方法,用于了解用户行为模式、改进产品和服务,并做出数据驱动的决策。
-
Apache Hive是一款建立在Hadoop之上的开源数据仓库系统,可以将存储在Hadoop文件中的结构化、半结构化数据文件映射为一张数据库表,基于表提供了一种类似SQL的查询模型,称为Hive查询语言(HQL),用于访问和分析存储在Hadoop文件中的大型数据集。Hive核心是将HQL转换为MapReduce程序,然后将程序提交到Hadoop群集执行。Hive由Facebook实现并开源。
-
验证19.5节中的Pig评估函数的示例。在MapReduce框架中,程序需要被转换为一系列的Map和Reduce阶段。可是,这不是数据分析者熟悉的编程模式。因此,为了对这个鸿沟搭建一座桥梁,建筑在Hadoop之上的、被称为Pig(猪)的抽象运用而生。Pig是一种高级编程语言,用于分析大型数据集。
-
建议文档和视频一起食用。
-
全国职业技能大赛 大数据开发
-
搭建hadoop集群环境太麻烦?运行两个脚本五分钟搞定环境搭建
-
Hive中的视图(view)是一种虚拟表,只保存定义,不实际存储数据。通常从真实的物理表查询中创建生成视图,也可以从已经存在的视图上创建新视图。创建视图时,将冻结视图的架构,如果删除或更改基础表,则视图将失败。视图是用来简化操作的,不缓冲记录,也没有提高查询性能。物化视图(Materialized View)是一个包括查询结果的数据库对像,可以用于预先计算并保存表连接或聚集等耗时较多的操作的结果。在执行查询时,就可以避免进行这些耗时的操作,而从快速的得到结果。
-
比如,如果表具有分区,则load命令没有指定分区,则将load转换为INSERT AS SELECT,并假定最后一组列为分区列,如果文件不符合预期,则报错。由于使用了split-update,UPDATE是不会出现的,所以delta文件中的operation是0 , delete_delta 文件中的operation是2。详见Hive事务的支持段落。所有合并都是在后台完成的,不会阻止数据的并发读、写。对于DELETE语句,则为null,对于INSERT就是插入的数据,对于UPDATE就是更新后的数据。
-
排查后确认问题,购买云服务器配置网段时是192.168.0.0,当时在配置/etc/hosts主机映射时使用的是私网ip,且配置了主机映射,后在配置中增加了公网映射。而报错时的网段为192.168.1.0,且进行其他操作时删除了私网ip的映射。ifconfig发现集群中每台服务器的网卡ip都为私网ip,考虑可能集群内部每台服务器之间是局域网通信,所以在/etc/hosts下补充私网ip主机映射。使用阿里云配置好且启动成功过的的集群今天启动报错。
数据错误
-
【代码】安装配置hadoop集群-完全分布模式。
-
大数据可视化工具hue的安装及集成过程
-
在使用这两个函数时,你可以使用列名、表达式、聚合函数等进行列的选择和计算。表示一个 DataFrame 对象,你需要将其替换为你实际使用的 DataFrame 变量名。另外,如果你使用的是 PySpark,可以使用。函数用于选择一个或多个列,并返回一个新的 DataFrame。它接受一个或多个列名作为参数,或者可以使用列表达式来选择列。它接受一个或多个列表达式作为参数,并返回一个新的 DataFrame。方法接受两个参数:新列的名称和要添加的表达式。模块中的函数来构建列表达式,如示例中的。
-
使用CloudEon可以快速地在Kubernetes上搭建Kylin5需要的HDFS、YARN、Hive、Zookeeper等组件,节省安装时间。
-
Arkime是一款开源回溯系统。
数据错误
-
这是我刚开始学习python时的一套学习路线,从入门到上手。(不敢说精通,哈哈~)希望对大家有帮助哈~大家需要高清得完整python学习路线可以。
-
之前使用es,更多的是使用term查询,和agg聚合分析。对相关性关注较少。实际上es擅长的是做模糊搜索,相关性搜索。ES是一个开源的通用的检索工具,能满足百分之八十的需求。相关性这个问题,是一个非常有意思的问题,值得深思。搞清楚相关性打分规则,有利于提高召回内容的相关性。深入了解以后,能帮我们解决剩下的百分之二十的需求。
-
本文将介绍RabbitMQ的七种工作模式的第一种Simple模式的代码实现,编程工具使用的是IDEA,在RabbitMQ中的工作模式都是生产消费模型多线程实操&&阻塞队列所谓Simple模式就是简单的一个生产者p与一个消费者c,一对一的关系,如下图所示:在这个过程中,生产者会将消息通过channel通道放入到我们的消息队列queue中,消费者在察觉消息队列中有消息时,会从queue中获取消息。既然我们刚刚使用到了管理界面,那当然要做一下简单介绍,如下图:Queue功能释义queue1的详情页。
-
下面模拟一条消息显示被投入普通队列,这条消息被设置过期时间是10秒,在这10秒内没有消费者来处理,因此这条消息就过期了,变成了死信,这时,RabbitMQ会将它放到死信队列里,也就是我们在代码中声明的死信队列。该代码虽然执行成功了,并且创建了我们声明的交换机,但是因为我们指定的路由键找不到与之绑定的队列,所以消息并不会推送进rabbitmq,但是因为rabbitmq并没有报错,所以我们会误以为推送成功了。这时再运行程序,就会进行报错,我们这里是输出了错误,实际生产中应该是将错误记录到指定的日志数据表中。

-
-
-
-
-
王坚博士曾经做过这样一个非常形象的比喻,他将做 App 比作是在别人的花园里弄盆栽,「种点花草是没有问题的」,不过「别人叫你的产品下架你就得下架,这是有问题的」,现在在 GitHub 上,众多的开发者显然遭遇了这样的问题。
-
刚刚获悉,腾讯在光网络设备和数据中心领域的两大硬件自研设计“OPC-4”和“TMDC”顺利通过OCP(Open Compute Project)审核并正式接受为官方开源贡献。这是腾讯在硬件领域的开源设计首次被OCP官方正式认可,同时,腾讯也成为中国首家对OCP有开源贡献的互联网公司。
-
NVIDIA今日宣布,在NVIDIA GPU Cloud (NGC)容器注册上,向交通运输行业开源NVIDIA DRIVE™自动驾驶汽车开发深度神经网络。
-
11月28日,阿里云正式开源机器学习平台 Alink,这也是全球首个批流一体的算法平台,旨在降低算法开发门槛,帮助开发者掌握机器学习的生命全周期。
-
近日,开源数据库厂商MongoDB与阿里云在北京达成战略合作,作为合作的第一步,最新版MongoDB 4.2数据库产品正式上线阿里云平台。
- 数据错误
-
-
首次落地中国大陆的OpenInfra:中国对于开源做出的贡献力量已不可忽视
一张标志着上海现代建筑地标的东方明珠海报,另一张展示着上海悠久历史的豫园景区海报,不仅向我们展示了这座城市浓厚的历史气息与现代化的繁荣,也让我们看到了OpenStack历经9年历史背后仍有着新鲜的科技气息。仅从这两张景色迷人且拥有时尚气息的两张海报,便能够看出此次开源基础设施峰会的用心良苦。没错,前身为OpenStack Summit的Open Infrastructure Summit首次落地中国大陆,而此次也正是阿丹第一次参加这场盛会,深感荣幸。
-
四大开源项目联合发布 腾讯已成Github全球贡献前十公司!
近日在Techo开发者大会上,腾讯正式对四大重点开源项目进行了联合发布,包括分布式消息中间件TubeMQ、基于最主流的 OpenJDK8开发的Tencent Kona JDK、分布式HTAP数据库 TBase,以及企业级容器平台TKEStack。
-
正式开源TKE和TBase,腾讯正成为大数据领域开源全面的厂商
在11月6日召开的Techo开发者大会上,腾讯云副总裁、腾讯数据平台部总经理蒋杰博士正式对外披露腾讯大数据平台10年技术演进历程。经过10年的积累,腾讯大数据平台的算力资源池目前已有超过20万台的规模,每天实时数据计算量超过30万亿条,并且随着资源管理平台核心TKE和分布式数据库TBase正式对外开源,腾讯正在成为大数据领域开源全面的公司。
-
首次落地中国大陆的OpenInfra:中国对于开源做出的贡献力量已不可忽视
一张标志着上海现代建筑地标的东方明珠海报,另一张展示着上海悠久历史的豫园景区海报,不仅向我们展示了这座城市浓厚的历史气息与现代化的繁荣,也让我们看到了OpenStack历经9年历史背后仍有着新鲜的科技气息。仅从这两张景色迷人且拥有时尚气息的两张海报,便能够看出此次开源基础设施峰会的用心良苦。没错,前身为OpenStack Summit的Open Infrastructure Summit首次落地中国大陆,而此次也正是阿丹第一次参加这项盛会,并感到十分荣幸。
数据错误 -
雪花算法(snowflake) :分布式环境,生成全局唯一的订单号
snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。 这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等。 其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号,最后还有一个符号位,永远是0。
-
Q:什么是Spark?A:简单理解,Spark是在Hadoop基础上的改进,是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。
