- 相关博文
- 最新资讯
-
本文探讨了Java在大数据分布式存储中的应用,针对金融、医疗等行业的痛点问题提出解决方案。在金融高频交易场景中,Java方案通过内存缓存和异步写入将延迟从52ms降至8ms;银行灾备系统实现15秒故障检测和45秒切换,满足监管要求;医疗领域则平衡隐私保护与实时调阅,CT影像调阅时间从30秒缩短至1.2秒。研究基于18个行业案例,展示了Java如何通过全行业适配、数据安全可控和智能调度等核心能力,将存储延迟降低90%,扩容停机时间从8小时缩短至100ms,有效解决企业面临的存储性能瓶颈问题。
-
Hadoop Distribured File System,简称HDFS,是一个分布式文件系统(1)NameDode:负责管理HDFS的元数据,如文件和目录结构,以及文件块的位置。它是HDFS的核心控制整个文件系统的操作。(2)DataNode存储实际的数据块(block),负责数据的读写操作,并定期向NameNode报告其状态。(3):定期备份NameNode 的元数据,以防止 NameNode崩溃导致的数据丢失。Map和Reduce(1)Map:将要计算的数据拆分。
-
Redis(SETNX + RedLock)、ZooKeeper(临时节点 + Watch机制)。K8s在大促中的应用(HPA自动扩缩容)、Serverless(适合定时任务/日志分析)。随机过期时间 + 多级缓存(本地→Redis→DB)+ 熔断降级(Sentinel)。延迟双删(先删缓存→更新DB→再删缓存)、订阅Binlog(Canal监听变更)。保证可见性(强制主存读取)和有序性(禁止指令重排序),但不保证原子性(如。用STAR法则描述项目:背景(S)、任务(T)、行动(A)、结果(R)。
-
本文结合 21 个案例(含 70 个极端天气站台),详解 Java 大数据在智能公交全场景的应用。极端天气预测准确率 88%,暴雪天滞留降 61%,车型适配让超载率从 25%→6%,附完整代码。
-
然而,传统的纸质SOP管理方式已经无法满足现代企业的需求,数字化的SOP工具正在成为企业运营管理的新趋势。支持自定义数据库、模板创建和多人协作功能。其丰富的模板库包含专门的SOP管理模板,能够快速搭建标准化作业体系,特别适合追求个性化和灵活性的现代企业。其简洁的设计和直观的操作方式降低了学习成本,特别适合小型团队和偏好简单工具的用户群体进行基础的流程管理。愿您在标准化运营的道路上找到最完美的数字化助手,实现从经验驱动到流程驱动的企业管理转型,让高效、规范、可持续的运营模式成为您企业竞争优势的核心基石。
-
在日常开发中,我们经常需要对数据库中的数据进行分页展示。特别是当表数据量达到几十万甚至上百万级时,传统的 `LIMIT` 分页方式会面临严重的性能瓶颈。今天,我将分享一个真实的性能优化案例,通过模拟大页码查询的现场,从90秒缩短到 965 毫秒,显著提升了查询效率。本篇文章将从问题出现的原因、索引原理、优化思路和最终实战效果等方面,为你全面讲解如何高效处理 MySQL 大数据分页查询问题。
-
打开页面后选择对应的组件及版本即可!
-
《物流管理工具全景分析与选型指南》 摘要:本文系统梳理数字经济时代物流管理工具的战略价值与技术演进,构建四象限分类模型(协作型/专业型×基础/高级)。提出包含分布式处理能力(TPS≥5000)、混合云兼容性等关键指标的选型框架。研究显示,采用先进物流工具的企业可降低运营成本,异常响应速度提升2-3倍,其中智能WMS系统能实现拣货效率提升。为不同规模企业提供从敏捷协作到专业仓储的数字化转型路径建议。
-
使用的虚拟机是roucky8,需要下载java,rqm四个包可以在/etc下找到使用rpm -ivh *.rpm 安装所有实验开始前确保时间正确如果时间不正确修改时间2.配置文件第一个文件:vim /etc/hosts第二个文件 :cd etc/elasticsearch/需要修改的地方:启动服务并查看java状态logstash安装在了 /usr/share/logstash/这里ln -spwd第三个文件: vim /etc/kibana/kibana.yml。
-
DL4J(Deeplearning4j)和DJL(Deep Java Library)都是基于Java生态的深度学习框架,但二者在设计理念、技术架构和应用场景上有显著差异。以下从六个维度进行综合对比:DL4JDJL选DL4J若:选DJL若:DL4J:DJL:💡 选择建议:
-
MongoDB与MySQL的对比分析表明两种数据库各有适用场景:MongoDB适合灵活schema、高并发写入和文档嵌套,而MySQL更适合固定结构、强一致性和复杂关联查询。MongoDB社区版采用SSPL许可证开源,企业版收费。替代方案建议包括CouchDB、Elasticsearch等。ES与MongoDB的核心差异在于ES专注于搜索分析,而MongoDB侧重通用存储,二者常以互补架构配合使用。技术选型需根据具体业务需求决定,如搜索场景可选ES,事务需求则需MySQL或MongoDB企业版。
-
本文介绍了Python中迭代器和生成器的区别及其实现方式。迭代器通过__iter__()和__next__()方法实现惰性计算,适合处理大数据集(如车牌数据集CCPD),能节省内存并支持自定义遍历逻辑。生成器则使用yield关键字简化迭代器创建,适用于需要按需生成值的场景。文章通过自定义迭代器案例展示了数据处理流程,包括文件筛选、坐标解析和归一化操作,并说明了如何利用迭代器协议实现流式处理大数据量。两者核心区别在于:迭代器是更底层的协议,生成器是迭代器的语法糖实现。
-
本文详细解析了 Elasticsearch 快照恢复 API 的三个核心参数:indices(指定恢复的索引)、rename_pattern(定义重命名匹配模式)和rename_replacement(定义重命名规则)。通过多个实际案例展示了参数组合使用效果,包括恢复特定索引、通配符匹配、排除索引以及复杂重命名等场景。文章特别强调了索引命名的规范要求,解释了 Elasticsearch 对字符长度和类型的限制原因,包括安全性、性能、兼容性等方面的技术考量。
-
本文介绍了Yocto项目中的关键构建任务流程,主要包括:1)获取源码(do_fetch)和解包(do_unpack);2)应用补丁(do_patch)解决设备适配问题;3)系统根目录准备(do_prepare_recipe_sysroot)实现配方间共享;4)配置(do_configure)和编译(do_compile)过程;5)安装(do_install)和打包(do_package)生成目标文件;6)质量检查(do_package_qa)和根文件系统生成(do_rootfs);7)最终镜像创建(do_i
-
本文AI产品专家三桥君系统阐述了AI产品经理的核心方法论:1)精准定位行业痛点,如酒店业的服务效率问题;2)构建"精专"数据策略,避免通用数据"水土不服";3)推动技术落地需充当业务与技术"翻译官";4)通过可量化ROI证明价值;5)采用SaaS模式降低使用门槛;6)以开放API构建行业生态
-
你就能访问 Kibana UI,查看 Linux 上 Elasticsearch 的数据啦。elasticsearch.hosts: ["<远程ES服务器地址:端口>"]elasticsearch.username: "<用户名>"elasticsearch.password: "<密码>"从 Elastic 官方下载页面选择对应版本(server.host: "<本地主机地址>"
-
数据仓库和数据库是企业数据管理的两大核心工具。数据库主要负责实时业务处理(OLTP),确保日常交易高效运行;数据仓库则专注历史数据分析(OLAP),支持战略决策。关键区别在于:数据库采用规范化存储,强调实时性和事务处理;数据仓库采用反规范化结构,侧重数据整合和趋势分析。企业实际应用中,二者常配合使用:数据库支撑业务系统运转,数据仓库则从多个数据源(包括数据库)抽取数据进行分析。选择时需考虑业务需求、数据特征和成本效益,通常数据库满足日常操作需求,数据仓库适合大规模历史数据分析场景。
-
问题摘要:Hive任务在处理90天数据(1440个分区)时仅生成400+个reduce任务,与预期不符(应等于分区数)。单日处理16个分区时却能正确匹配reduce数量。
-
一篇文章带你入门 Spring AI 知识库开发,选用 ES 作为 AI 向量数据库。
-
找到-XX:+UseConcMarkSweepGC 并修改为 -XX:+UseG1GC。一、使用一下命令找到你 jvm.options文件配置 的位置。再使用 docker ps -a 查看运行中和运行失败的容器。三、将失败的elasticsearch 容器 移除。二、vi/vim这个文件 jvm.options。再使用docker logs 容器id查看日志。使用docker ps 查看运行中的容器。没有elasticsearch。启动完成后返回一个序列id。创建挂载的文件和配置。

-
华为云TaurusDB计算存储分离架构:让数据“身”分离,“心”凝聚
在2019年HC大会上,华为重磅推出最新一代高扩展海量存储分布式数据库——TaurusDB,它拥有一个最大的特点就是将存储和计算以一种分离的架构形式运行。很多人就会问到,华为云为什么会设计这款产品?核心竞争力是什么?对比原生MySQL的优势有哪些?借此时机,CSDN记者有幸采访到了华为云TaurusDB数据库资深技术专家,现在就请他来为我们一一解答。
-
不管我们是不是技术迷,无可否认的是,现在我们各自的生活都对互联网产生了高度依赖。在这个各种社交软件都离不开物联网设备的社会,它们以各式各样的方式将我们与网络世界连接起来。
-
2019年技术盘点云数据库篇(一):UCloud专家谈云数据库:千锤百炼 云之重器
公有云逐渐成为企业运行 IT 设施的新趋势,那么作为企业最核心的系统—数据库,数据上云也成为大数据时代的必然选择。对企业来说,数据可视为其命脉,因此数据迁移上云就意味着将企业“命脉”搬到云平台。事实上,数据上云有两种形式,数据库直接上云或者选择云数据库,而云数据库利用其云原生的优势具备了许多过去数据库产品不具备的优势,包括可靠性、弹性、存储容量以及成本等,正逐渐被更多的企业所接受。
-
随着移动互联网、信息技术等创新发展,数据量呈指数级爆发式增长并表现在多个方面,即规模扩张、结构多元化的数据新形态;业务升级转型带来的场景化需求数据新部署;市场细分带来的数据应用新模式以及承载行业发展,发挥核心资源池地位的数据新价值等。据IDC预测,全球数据圈将从2018年的33ZB增至2025年的175ZB,实现5倍以上的增长。在新数据时代,数据在数据形态、部署环境、应用模式和价值需求等方面均出现了更为精细化的需求,应对数据爆发压力,欲将海量的连接、微秒级的延迟、极高的性能体验为我所用,创新存储价值则变得势在必行。
-
点赞功能大家都不会陌生,像微信这样的社交产品中都有,但别看功能小,想要做好需要考虑的东西还挺多的,如海量数据的分布式存储、分布式缓存、多IDC的数据一致性、访问路由到机房的算法等等。
-
近日,开源数据库厂商MongoDB与阿里云在北京达成战略合作,作为合作的第一步,最新版MongoDB 4.2数据库产品正式上线阿里云平台。
-
Gartner 发布2019年超融合魔力象限:新增深信服一员!
近日,国际权威研究分析机构Gartner公布了2019全球《超融合基础设施魔力象限》报告。报告显示国内仅有三家云计算厂商进入2019超融合基础设施魔力象限,分别是深信服、华为、华云数据。其中深信服超融合(sangfor aCloud)凭借技术优势、技术服务、广泛用户实践和全球市场表现首次入围,成为榜单上新晋的超融合厂商。
-
破题大数据应用发展难点,探索城市大数据发展之路——TalkingData正式发布“城市大数据场景创新平台”
2019年11月25日,T11 2019暨TalkingData数据智能峰会在京成功举办。会议期间,TalkingData正式发布“城市大数据场景创新平台”,并与武汉市东湖高新区签订“TalkingData华中研发总部、全国交付总部落户武汉东湖高新区”合作协议,与数睿科技、脉策数据、万商联信、爱家物联等多家合作伙伴签订了战略合作协议。
-
【重磅快讯】T11 2019数据智能技术峰会举办,AI将成为行业颠覆者
11月25日,T11 2019数据智能技术峰会在京举办。TalkingData正式宣布了2019年的最新战略布局,以数据平台为支撑,借助大数据技术积累与人工智能技术创新,聚焦不同行业场景需求,并在选址、预测、个性化推荐等方面进行深入应用,以数据和科技的力量驱动发展。
-
CSDN云计算「C课有道」栏目趁着这股技术风潮再次如期而至啦!秉承「门门有路,路路有门」的理念,这次CSDN云计算小分队特邀阿里云、腾讯云、青云、天云等企业内的“国宝级”架构师,共同打造了一款数据库系列进阶教程,效果绝堪比“红宝书”。 从数据库宏观发展入手,内容主要涉及云数据库为代表的非关系型数据库、MySQL数据处理、分布式等诸多技术要点,将造福开发者设置为终极指标,纯技术绽放的精彩无限,实在不容错过。
-
近日2019甲骨文云大会在上海举行。大会今年以“超越,由此开启”为主题,聚集了众多数字化领军企业代表,与合作伙伴、技术专家和意见领袖一起共同探讨技术创新将如何帮助企业探索数据价值,创造无限可能。
-
如果有人要问2019年技术圈什么最热,“中台”绝对当仁不让,从观望到试水,很多公司做出了从 0 到 1 的探索。众所周知,“中台”一词在国内最早是由阿里提出来的,2015 年,马云参观芬兰游戏公司Supercell,观察其每个游戏开发的小团队只有六七个人,但开发与停止的速度之快,让马云即惊讶又好奇。得知如此快的原因是开发者将游戏开发过程中用到的一些通用的游戏素材和算法整理出来,作为工具提供给小团队使用,使得同一套工具可以支持多个游戏研发团队。这样的架构模式给了马云很大的震撼和启发,这也催生了阿里巴巴的中台战略,加之越来越的企业跟随其热度,寄希望于借助中台推动业务增长以快速实现数字化转型, “中台”得以风靡。
-
腾讯Techo开发者大会揭晓云存储发展趋向:高性能、高可用、高性价比
产业数字化转型过程中产生着比过去任何一个时代都多的数据。在这样的背景下,数据存储技术应该怎么发展?11月7日,在腾讯Techo开发者大会上,来自科研领域的专家和腾讯云存储业务的工程师们共同揭开了云存储的发展趋势。
-
四大开源项目联合发布 腾讯已成Github全球贡献前十公司!
近日在Techo开发者大会上,腾讯正式对四大重点开源项目进行了联合发布,包括分布式消息中间件TubeMQ、基于最主流的 OpenJDK8开发的Tencent Kona JDK、分布式HTAP数据库 TBase,以及企业级容器平台TKEStack。
-
正式开源TKE和TBase,腾讯正成为大数据领域开源全面的厂商
在11月6日召开的Techo开发者大会上,腾讯云副总裁、腾讯数据平台部总经理蒋杰博士正式对外披露腾讯大数据平台10年技术演进历程。经过10年的积累,腾讯大数据平台的算力资源池目前已有超过20万台的规模,每天实时数据计算量超过30万亿条,并且随着资源管理平台核心TKE和分布式数据库TBase正式对外开源,腾讯正在成为大数据领域开源全面的公司。
-
AWS在中国区域放出了一款“重量级”容器服务,名为 AWS Fargate,光环新网运营的 AWS 中国(北京)区域和西云数据运营的 AWS 中国(宁夏)区域均提供该项服务。 据悉这是一款可以适用于 Amazon ECS的计算引擎,主要帮助企业在生产过程中运行容器、却无需部署或者管理服务器,换句话说就是专注设计和构建应用程序,而不用挂心太多基础设施的“那些事儿”。
2019-11-05